Model Predictive Control and Reinforcement Learning as Two Complementary Frameworks

نویسندگان

  • Damien Ernst
  • Mevludin Glavic
  • Florin Capitanescu
  • Louis Wehenkel
چکیده

Model predictive control (MPC) and reinforcement learning (RL) are two popular families of methods to control system dynamics. In their traditional setting, they formulate the control problem as a discrete-time optimal control problem and compute a suboptimal control policy. We present in this paper in a unified framework these two families of methods. We run for MPC and RL algorithms simulations on a benchmark control problem taken from the power system literature and discuss the results obtained.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Developments in the Application of Automatic Learning to Power System Control

In this paper we present the basic principles of supervised learning and reinforcement learning as two complementary frameworks to design control laws or decision policies within the context of power system control. We also review recent developments in the realm of automatic learning methods and discuss their applicability to power system decision and control problems. Simulation results illus...

متن کامل

Predictive Power of Involvement Load Hypothesis and Technique Feature Analysis across L2 Vocabulary Learning Tasks

Involvement Load Hypothesis (ILH) and Technique Feature Analysis (TFA) are two frameworks which operationalize depth of processing of a vocabulary learning task. However, there is dearth of research comparing the predictive power of the ILH and the TFA across second language (L2) vocabulary learning tasks. The present study, therefore, aimed to examine this issue across four vocabulary learning...

متن کامل

Predictive Power of Involvement Load Hypothesis and Technique Feature Analysis across L2 Vocabulary Learning Tasks

Involvement Load Hypothesis (ILH) and Technique Feature Analysis (TFA) are two frameworks which operationalize depth of processing of a vocabulary learning task. However, there is dearth of research comparing the predictive power of the ILH and the TFA across second language (L2) vocabulary learning tasks. The present study, therefore, aimed to examine this issue across four vocabulary learning...

متن کامل

Reinforcement Learning Based PID Control of Wind Energy Conversion Systems

In this paper an adaptive PID controller for Wind Energy Conversion Systems (WECS) has been developed. Theadaptation technique applied to this controller is based on Reinforcement Learning (RL) theory. Nonlinearcharacteristics of wind variations as plant input, wind turbine structure and generator operational behaviordemand for high quality adaptive controller to ensure both robust stability an...

متن کامل

Reinforcement learning based feedback control of tumor growth by limiting maximum chemo-drug dose using fuzzy logic

In this paper, a model-free reinforcement learning-based controller is designed to extract a treatment protocol because the design of a model-based controller is complex due to the highly nonlinear dynamics of cancer. The Q-learning algorithm is used to develop an optimal controller for cancer chemotherapy drug dosing. In the Q-learning algorithm, each entry of the Q-table is updated using data...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006